Mrs Choong Mr Keanan-Brown Mrs Leslie Mrs Stock Mrs Williams

Name:

Teacher's Name:

SULL LADIES COL

3U ASS II 2003 PLC

PYMBLE LADIES' COLLEGE

MATHEMATICS EXTENSION 1

YEAR 12

11th June, 2003

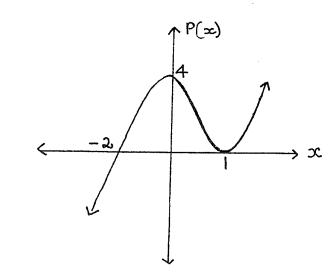
TIME ALLOWED – 75 Minutes

MARKING GUIDELINES: THE MARKS FOR EACH PART ARE INDICATED BESIDE THE QUESTION

Instructions:

- All questions should be attempted.
- All necessary working must be shown.
- Start each question on a new page
- Put you name and your teacher's name on each page
- Marks may be deducted for careless or untidy work.
- Approved calculators may be used.
- DO NOT staple different questions together.
- All rough working paper must be attached to the end of the last question.
- A standard integral sheet is attached.
- Staple a coloured sheet of paper to the back of each question.
- Hand in this question paper with your answers.
- There are four (4) questions in this paper.

Question 1


(c)

13 Marks

(a) Differentiate $\tan^{-1} 2x$

(b) Evaluate
$$\int_{2.5}^{5} \frac{dx}{\sqrt{25 - x^2}}$$

1 mark

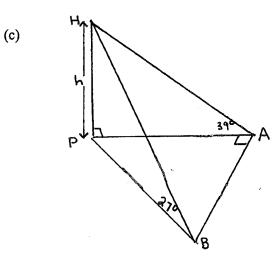
P(x) is sketched above

(i)	Write down the equation of $P(x)$ (Leave in factored form)	1 mark
(ii)	Solve $P(x) > 0$	1 mark
(d) (i)	Show that the function $f(x) = x^3 - x^2 - x - 1$ has a zero between 1 and 2.	2 marks
(ii)	Taking $x = 2$ as the first approximation to this zero use Newton's method to find a second approximation.	3 marks
(e) Find t	3 marks	

Question 2

(Start a new page) 13 Marks

(a) If α , β , λ are the roots of $x^3 + 6x^2 + 3x - 10 = 0$


find 1 mark

(i) $\alpha + \beta + \lambda$ (ii) $\alpha\beta + \alpha\lambda + \beta\lambda$ 1 mark

(iii)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\lambda}$$
 1 mark

(iv)
$$\alpha^2 + \beta^2 + \lambda^2$$
 2 marks

(b) If a polynomial P(x) is divided by (x-2) the remainder is 4. When P(x) is divided by (x + 1) the remainder is -5. Find the remainder when P(x) is divided by (x-2)(x+1)4 marks

At a point A due east of a vertical hill PH, height 'h' metres, the angle of elevation of the top of the hill is 39° . At a point B 500m due south of A the angle of elevation of the same hill is 27° .

(i) Show $PB = h \tan 63^\circ$

1 mark

(ii) Hence or otherwise find 'h' to the nearest (m). 3 marks

Q	uestion	3	(Start a new page)	13 Marks	
· (a)		$\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{1}{4}\right)$			2 marks
(b)	The ro	bots of $4x^3 + 32$	$2x^2 + 79x + 60 = 0 \text{ are } \alpha,$	β and $\alpha + \beta$	
	(i)	Show $\alpha + \beta$ =	=4		l mark

(ii) Hence or otherwise solve $4x^3 + 32x^2 + 79x + 60 = 0$ 3 marks

(c) A function is defined as $f(x) = x^3 + 9x^2 + 27x + 8$ for $-2 \le x \le 1$

(i) Show f(x) is an increasing function for the given domain 2 marks

(ii) Explain why $f^{-1}(x)$ exists for $-2 \le x \le 1$ 3 marks and state its domain and range.

(iii) Find the gradient of $y = f^{-1}(x)$ at the point (-11, -1) 2 marks

Question 4		(Start a new page)	13 marks	
(a)	(i)	Sketch $y = 2\sin^{-1} 3x$		3 marks
	(ii)	Shade the area bounded by $y = 2 \sin x$ and $x = \frac{1}{6}$. Hence or otherwise find of $\int_{0}^{\frac{1}{6}} 2 \sin^{-1} 3x dx$		3 marks
(b)	bank a	e day his daughter was born a father in account that paid interest at a fixed rate bunded annually.		
	(i)	Show that there would be \$5,033.83 the payment of interest on her 21st bi additional deposits were made.		1 mark
	(ii)	However, the father adds \$1000 to the year on his daughter's birthday. How in the account on her 21st birthday at interest and the last deposit? (the int the same).	much would be the first ter payment of	3 marks
	(iii)	Unfortunately the interest rate change compounded annually on all future in after the \$1000 deposit was made on 10th birthday. How much would be her 21st birthday after the payment of deposit?	vestments immediated his daughter's in the account now on	y 3 marks

END OF PAPER

ř

¢......

Question Two 13 marks (a) (1) x+B+Y = -6 ١ l (1) & B+ L V + BL = 3 $\binom{11}{2} \frac{Br \cdot Zr + ZB}{ZRr} = \frac{3}{10}$ ١ $\begin{pmatrix} (v) \\ d^{2} + B + V^{2} \\ = 3b - 2 \times 3 \\ = 30$ 2 f(x) = Q(x)(x-2)(x+1) + ax+b(p)P(2) = 2a + b = 4P(-1) = -a + b = -53a = 9a = 3 b = -2 $\therefore R(x) = 3x - 2$ tanb3 = PB h BB = htanb3 (°) De . PA=htan 51° A PB² = PA² + AB² 500 $h^{2} + an^{2} + b^{3} = h^{2} + an^{2} 51 + (500)^{2}$ $h^2 = \frac{500^2}{4an^263 - 4an^251}$ B 250000 = 10~,440.513

4

З

Question Three 13 marks (a) let $\tan^{-1}(\frac{1}{4}) = y$ $\tan^{-1}(\frac{3}{5}) = x$ tan $y = \frac{1}{4}$ tan $x = \frac{3}{5}$ tan (sc+y)= tan z + tan y 1-tan sc+any = 3 + 1 1-3, + 1 = 1 2i+y = i = 1 2i+y = i = 1(b) (·) $d + B + d + B = -\frac{32}{4}$ 2 (d+B) = -8 $\alpha + \dot{B} = -4$ · one root is - 4 $\frac{4x^{2} + 16x + 15}{4x^{3} + 32x^{2} + 79x + 60=0}$ $\frac{4x^{3} + 16x^{2}}{16x^{2}}$ 16x2+79x 16x2 + 64x 15x + 60 15x+60 $(x+4)(4x^{2}+16x+15)=0$ (2x+4)(2x+5)(2x+3)=0 $x = -4v_{1} - 5/ - 3/2 - 3/2$ OR

2

١

З

$$d+B=-l_{\mu} \qquad d \beta (d+B) = -l_{\mu} \\ d \beta (-l_{\mu}) = -l_{\mu} \\ d \beta = \frac{15}{l_{\mu}} \\ B = \frac{15}{l_{\mu}} \\ B = \frac{15}{l_{\mu}} \\ d + \frac{15}{l_{\mu}} = -l_{\mu} \\ d d \\ b q^{2} + 1bl + 15 = 0 \\ (2 d+5)(2l+3) = 0 \\ d = -\frac{5}{2}, -\frac{3}{2} \\ B = -\frac{5}{2}, -\frac{3}{2} \\ B = -\frac{5}{2}, -\frac{3}{2} \\ B = -\frac{5}{2}, -\frac{3}{2} - l_{\mu} \\ (3) \\ (2 d+5)(2l+3) = 0 \\ d d x = -\frac{5}{2}, -\frac{3}{2} - l_{\mu} \\ (3) \\ (2 d+5)(2l+3) = 0 \\ d d x = -\frac{5}{2}, -\frac{3}{2} - l_{\mu} \\ (3) \\ (4) \\ (5) \\ (5) \\ (1) \\ (1) \\ (1) \\ (2) \\ (2) \\ (2) \\ (2) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (3) \\$$

Question W 13 ko a Ŵ 3 $\gg \infty$ - Tr ٢Y $(\frac{1}{6}, \frac{1}{6})$ 4 = 2sin3x $\frac{y}{z} = \sin^3 3x$ $\frac{x}{z} = \frac{y}{z} \sin \frac{y}{z}$ Rectangle Hre a 415 TZ-Ĵ Ø "/3 2/3 un y 18 1 3 TT + 2 18 3 3

b) (1) A = 1000(1.08)= \$50 33.83 last deposit (1) A = 1000 (1.08) + 1000 (108)21stbirthday = 1000 [1+ 1.08 +. 1.08 = 1000 [1 [1.08 -1] = \$55456.76 (141) Amount in her account after deposition 10th burthday A = 1000 (1.08) + 1000 (1.08) 1000 1.08-1 = \$16645.49 This now accrues interest out 40 for 11 years A = 16645.49 × 1.04 25624.96 New deposits on 11th birthday -> 21st birthday le 10 years A = 1000 × 1.04 + 1000 × 1.049 10004100 1000 1000 [1 [1.04"-1] 3 \$13486.35